

How to apply virtualization to Steel plants.

What is Virtualization

RUSSULA

How to apply Virtualization to Steel plants -2

Introducing Virtualization

-World becoming Virtual: stores, tours, books, libraries...

-Computing: abstracting physical devices into logical objects.

-Replace a physical with a virtual environment for an application

-First time: Popek and Goldberg for IBM:

Fidelity Isolation or Safety Performance

-WHY? Moore's law: Capacity doubles each 18 months.

Moore's Law

Introducing Virtualization

-Process needs stay equal for long times

-Servers run at 15-10% of its capacity

-Servers consume 2% power produced in the country. Another 2% for cooling.

-One server-one application model.

Consolidation:

-Condense multiple physical servers into fewer servers running multiple virtual machines.

-Consolidation ratio: number of VMs in a server.

-Companies adopting virtualization-first policies.

Consolidation

Increasing efficiencies

-Improving efficiency required for competitiveness: eliminate downtime.

-Reducing lifecycles of components reduce lifecycle of control systems.

-Functionality and maintenance cost to be ensured.

-Virtualization offers costs savings, efficient usage, simplified management, easy upgrades and overall, guarantees system uptime.

Virtualization

-One physical server running many virtual servers.

-Each virtual server acts as an isolated, independent computer.

-Virtualization adds HYPERVISOR layer

-Hypervisor distributes physical resources among guest computers.

-Hardware resources utilization vastly increased.

Types of Virtualization

RUSSULA

How to apply Virtualization to Steel plants — 7

Hypervisors

Type 1

Bare Metal

- Hypervisor runs directly on physical hardware, direct communication with physical resources.

Type 2

Host OS

- Hypervisor runs on host operating system, requiring extra 2 interfacing steps for each HW resource demand.

Type 1 Hypervisor

Type 2 Hypervisor

TODAY HYPERVISORS

CLI Commands for Configuration and Support Agentless Agentless Hardware Systems Management Monitoring VM VM VMware Infrastructure Virtual Machine Common Management Information Agents Support and Framework Model (Syslog, NTP, etc.) **Resource Management** Local Support Consoles VMkernel

— Citrix Xen

— VMWare ESX

- Microsoft Hyper-V

—Other:

- Oracle VM
- Red Hat KVM
- etc

Why Virtualize?

RUSSULA

How to apply Virtualization to Steel plants — 10

Why virtualize

Save energy and space

Increase uptime

Isolate the possible problems

Extend the life of the applications

Avoid the hardware vendor lock-in and make the upgrades simpler

Create test environments

Application cases

RUSSULA

How to apply Virtualization to Steel plants — 12

Server virtualized infrastructure

-Physical redundant servers host virualized plant computer architecture.

-Server runs hypervisor and hosts HMI server and clients.

-Engeneering tools fit in same server

-Thin clients remotely run virtualized clients.

Server virtualized infrastructure

-Redundant type 1 hypervisor servers.

-Redundant HD cabin (DELL, HP, IBM...)

-Thin Client Access software managed (Vmware Horizon, Citrix...), pulpit oriented.

-Several implementations for Nucor, Arcelor Mittal,

Russula approach

Server virtualized infrastructure

PROS

-Fewer servers consuming less energy and space.

-Easy maintenance and management: recovery points, load balance and hot swapping of failed hardware.

-Higher uptime and faster disaster recovery.

-Simplifies application isolation

-Guarantees future hardware migration.

-Extend application life.

CONS

-Magnified hardware failures

-High upfront investment that will be recovered in the long-run.

-New management tools and new skills for managing the virtualized environment.

-Unnecessary virtual machines sprawl due to the simplicity of deploying new instances.

Computer-bycomputer approach

-Provides solution to supoprt legacy systems

-Extends control system life

-Virtualization of legacy system allows it to run in modern HW.

-Allows future addition of other systems in the plant as they get outdated.

Computer-bycomputer approach

Russula approach

-Server running type 1 or 2 hypervisor.

-Size according to future upgrades of existing equipment in plant.

-Implementations in dozens of Steel plants running legacy equipment.

Computer-by-computer approach

PROS

- -Low cost solution
- -Simplifies the isolation of the applications
- -Guarantees the future hardware migration
- -Extend application life

CONS

-Missing advantages of a server virtualized environment.

-Not a fault tolerance solution.

Conclussions

 Virtualization has been used in corporate environments and developers. Now in industrial enviroments.

— As a developer that has been using virtualization along time RUSSULA has the experince and skills to both develop virtualized industrial systems and virtualization of existing ones.

BOOTH 2137 Visit US!

Thank you!

Credits to: Matthew Portnoy, Virtualization Essentials. Daniel Sánchez, Virtualization for Manufacturing Industries.

07/05/2017